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LETTER TO THE EDITOR 

A novel non-linear a-model for frustrated quantum 
antiferromagnets 

Giancarlo Jug? 
International School for Advanced Studies, Strada Costiera 11,34014 Trieste, Italy 

Received 11 August 1989 

Abstract. A new continuum-limit effective action for the description of the low-temperature 
long-wavelength fluctuations about the classical Ne61 state is proposed for the triangular-net 
quantum Heisenberg antiferromagnet. It is found that the novel frustration field plays a 
dominant role in describing deviations from the classical state, which would appear to be 
unstable to quantum fluctuations. 

The theoretical search for a model two-dimensional quantum Heisenberg anti- 
ferromagnet, which presents a spin-liquid quantum ground state and for which the Nee1 
classical state is only metastable, is a central issue in many approaches to magnetically- 
induced high-temperature superconductivity [ 13. 

Thus far, extensive investigations on the square-net nearest-neighbour anti- 
ferromagnet [2-41 have come to the conclusion that, at least for values of the parameter 
c/lJls2(J < 0, the exchange parameter,^, thevalueofthequantumspin, c, thespin-wave 
velocity), less than a critical value, there is Neellong-range order at zero temperature and 
which are less spin-liquid ground state. Furthermore, also in contrast to the case of the 
linear chain [ 5 ] ,  no topological phase term is present in the effective Hamiltonian to 
provide fermionic extended quasi-particle excitations [6] of the disordered ground state, 

It has seemed evident, however, that the above conclusions are strongly dependent 
on the nature of the underlying lattice. Therefore, in this Letter I will extend the new 
and versatile path-integral approach developed in a previous article [4] to the case of 
the (fully frustrated) triangular-net Heisenberg antiferromagnet in order to obtain an 
effective (quantum) non-linear-o-model (NLUM) Hamiltonian capable of providing a 
definite answer [7] to the problems of long-range order (LRO) and topological excitations 
in frustrated antiferromagnets. In Anderson’s original proposal for the spin-liquid [8], 
frustration played a major role in destroying LRO; the present theory shows this may 
indeed be the case, and I expect that the conclusions drawn for the triangular net will 
carry through to less frustrated but more complicated lattice geometries. The approach 
presented here is quite novel, in that it should also apply to any value of the spin s; the 
only other published NLUM approach to this problem [9] suffers from the usual large-s 
limitations, uses a different unphysical so@) principal order parameter and leads to 
rather different conclusions. The principal order parameter used in the present work, 
the sublattice magnetisation n, is found to be more amenable to N L ~  calculations. 
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7746 Letter to the Editor 

Following the approach of our previous article [4], the partition function for the 
quantum spin Hamiltonian X = -4JZ(i,i)Si Si (i, j nearest-neighbour sites of the tri- 
angular net) has the path-integral representation 

where ai = &1,5~+~ entails the sum over all six first-neighbour-shell sites S, A is Dirac's 
magnetic monopole potential, and MWp(n) = ( 2  In I 3) - ' (SWp - Q W Q p / l  n 1 '). The 
bosonic field + arises from a Hubbard-Strantonovitch transformation decoupling the 
spin operators for each infinitesimal 'time' slice, and can be interpreted as the local 
classical magnetic moment on site i. The only approximation involved in (1) is that the 
temperature is low, P l J (  + w, and that the typical time scale for the fluctuations of &(z) 
is large enough to justify the expansion in powers of time-derivatives of this field. For 
the linear-chain and square-net problems, the above approach has reproduced [4] the 
known [2 ,5]  effective actions for arbitrary s. Next, I carry out an expansion in the field's 
spatial derivatives, but I must first choose a ground state and a suitable order parameter 
which have smooth variations from site to site. The physical nature of t,!t in ( 1 )  imposes 
an expansion about the classical Nee1 state, with the well-known [8] canted 120"planar 
configuration on three sublattices. The natural order parameter is then the single sublat- 
tice magnetisation, and the resulting effective action can be used to analyse the stability 
of the classical state to quantum fluctuations. 

In view of the above considerations, a good candidate for a smooth order parameter 
field is the variable ni( z), defined via 

qi( t )  = s9?i[u]nj(.). 

The 3 X 3 matrixai  takes into account the canted configuration of the ground state spins 
on each sublattice, as it is generated by a uniform field n; in other words, 3 must include 
planar rotations by an angle 0, +2n/3,  -2n/3 for the sites of the three sublattices A, B, 
C, respectively. (Mixing with the chiral state (0, -2n /3 ,  +2n/3)  is neglected here, as 
this entails higher energy excitations.) It is convenient at this point to break explicitly 
the O ( 3 )  rotation symmetry of the spin Hamiltonian and choose a particular plane for 
the Ne61 configuration; the full symmetry will be restored, non-linearly as usual [lo], by 
a term proportional to -ln(l - (n3)*), where n3 is the off-plane component, in the 
effective action. 3 then has the form 

where 8[il = 0, +2n/3,  -2n/3 according to whether [i] = A, B, C. The 333 matrix 
element embodies the frustration content of each particular +-configuration. True 
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Figure 1. Examples of frustration field con- 
figurations relevant to this work. ( a )  flat, ( b ) ,  (c )  
topological configurations. Arrows indicate off- 
plane spin component orientation, full lines the 
constant frustration field lines, first-neighbour- 
shells the nearest-neighbour frustration balance. 
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frustration arises as soon as out-of-plane spin fluctuations are allowed, since it is not 
possible to arrange the directions of the q3 components in such a way that all bonds on 
each elementary plaquette are antiferromagnetically satisfied. Viewing the problem of 
arranging the k directions of  so as to involve only low-lying excitations of the N e d  
state-in terms of the Wannier ground states [ l l ]  for the antiferromagnetic Ising model, 
I will take into consideration here only q;-configurations such that no plaquette with 
three parallel orientations is allowed. There are infinitely many ways of achieving this; 
here, I will classify each configuration in terms of its frustration field ui(z). u is a unit 
vector lying on the physical (x, y) triangular-net plane and defining at each site the 
local direction of nearest-neighbour bond frustration. I will neglect all those u-field 
configurations where the direction of frustration is multi-valued, as I believe they form 
a set of zero measure and are unimportant for the purposes of this work. Figure 1 shows 
examples of frustration field configurations believed to be relevant to this work. The 
field q i [ u ]  is integer-valued and is such that (- 1)q[ is i-1 (or -1) along the frustration 
lines. Notice that in the present description of fluctuations about the classical state the 
spins on each elementary plaquette are permitted to have completely separate motion, 
Wannier restrictions apart, a feature clearly unallowed by fluctuations ruled by an so(3) 
principal order parameter [9] (observe that the ( n , ~ )  global order parameter space, 
however, remains isomorphic to so(3)). 

From the above discussion it is clear that the partition function becomes a functional 
integral over all the configurations of the fields n and U :  

where the imaginary part SB of the action is the sum over all single-spin Berry phases 
induced by the low-frequency expansion in (1 ) .  In the remainder of this Letter I will 
derive the form of the real part &of the continuum-limit action. For this purpose, I will 
consider u-field configurations made up of infinite two-dimensional domains where u is 
uniform (such as those of figure 1 ) ,  briefly commenting on the form the action takes along 
the (one-dimensional) boundaries of such domains, e.g. along the radii of configurations 
figure l (b ,  c). Consider the flat configuration of figure l ( a ) ,  the frustration field being 
uniform along the x-direction so that qi = iy . For any site i ,  the form ( 2 )  of 9Ii and the 
single-valuedness of u ensure that = beside 3; = a;’, so that = 
s%iZ6%sni+s. Expanding the smooth n-field 

n i + &  = ni + bad,ni + &tjatjbd,dbni + . . . 
then summing over all six first-neighbour S s  and rescaling n3 + in3 ,  one finds 

v2 0 0 
i l i = - 3 s 3 i [ 1 + : [ i  0 ) + . . . i n i .  

38; - a: 
The first two real terms of the lattice action of ( 1 )  become: 

B 
iJJ0’ d t  2 + i  * +i+s - sIJI Jo d r  2 IaiI 

i ,  6 

d 3  
a2 = - IJ /s2  1’ d z  1 dxdy (in1 - 1)2 + 

0 
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v 3  P + 7 IJls2 1 d t  [dxdy n 
0 

(1 - 2/lnl)V2 0 0 

(1 - 2//nl)V2 0 i + * * * (3) k 0 (1 - 4 / 3 1 n ( ) ( @ $  - $8:) 
with the first integral giving the usual NLOM constraint 1 n I = 1. The second-order term 
in the low-frequency expansion (1) then becomes: 

which gives the usual dynamics of the order parameter. Gathering the relevant terms of 
( 3 )  and ( 4 ) ,  one gets: 

21 ( 5 )  
1 + 2a-2(n')2 + $(a,n')2 - 4 ( a x n L ) *  + 7 (a,n ) 

where c = 3 ( J l a s / 2  is the spin-wave velocity and where (d, n') = (n' ,  n2, n3) with 
n2 = 1. It is straightforward to show that for a uniform frustration field direction chosen 
along the two other possible lattice directions the form of Yeff is exactly the same, 
provided the reference frame ( x ,  y) is rotated so that the x axis is always along the 
direction of U. Thus, for the arbitrary u-field configurations of interest, one concludes 
that 

dx  dy [ ( ~ 3 , n ) ~  + m;(n3)>' + 4 ( ~  V n 3 ) 2  - $(U - V n 3 ) 2 ]  (6) 

where go = 2 c / ( v 3  ( J I s2 )  is the coupling constant of the resulting N L ~ ,  mi = 2 a - 2 ,  and 
where U is a unit vector orthogonal to U. 

Hence, for a chosen Nee1 plane and flat frustration field configuration (e.g. ( 5 ) )  one 
can seen that the resulting NLOM presents a number of new features, not merely a 
modification of go as previously conjectured [ 3 ] ,  all induced by frustration. (i) The 
Goldstone mode and linear dispersion relation remain associated with in-plane fluc- 
tuations of nil. (ii) As soon as out-of-plane fluctuations occur, there is a restoring term 
proportional to (n3))". (iii) While it costs energy to modulate in the direction for which 
nearest-neighbour bonds are antiferromagnetically satisfied ( U ) ,  it clearly pays to modu- 
late along the direction of frustration (U). To corroborate this physical interpretation, I 
will now give the form of the effective Lagrangian for those sites (on the radii of 
configurations (b)  and (c) of figure 1 where the u-field has the only possible change of 
direction (120"). I find for these sites 

3 = (1/2g6)[(a,nll)2 + + 3(U - v ~ ~ ) ~  + ( a , n 3 ) 2 ]  
where U is along the direction of the radius (hence U is orthogonal to it). This reflects 
the fact that along the u-direction there is an exact balance between frustrated and 
unfrustrated bonds; thus it only costs energy to modulate along U .  Notice that these sites 
do not contribute to the full two-dimensional action, which remains of form (6). 
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Details of a full renormalisation group analysis of the LRO properties of the present 
N L ~ ,  as well as of the model’s symmetries and possible topological phases arising from 
the imaginary term YP,[n, U] (the latter clearly being sensitive to the topology of the u- 
field itself) will be given elsewhere. Here, it suffices to say that a cursory look at the flat 
frustration form of Ye,, ( 5 ) ,  indicates that at large distances there will be a crossover in 
both effective spin and spacetime dimensionalities, with the n3-component and u- 
direction being renormalised away at long wavelengths and small frequencies. This 
should result in quasi-XY, quasi-(1+ 1)-dimensional asymptotic behaviour, and thus in 
the destruction of the Ne61 LRO at large distances by quantum fluctuations. At  short 
distances, however, the spins will be ordered, and the crossover may represent the 
first quantitative (albeit classical) description of the spin-liquid state, predicted [8] and 
perhaps observed [12] for the triangular systems. 
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